SDXL Container
SDXL Container
A docker container for SDXL

Highlights:
- Reproducible: everything runs inside a container (no local Python env needed).
- Simple: one command to (optionally) caption images + train.
- Safe defaults for few-shot SDXL LoRA.
- Includes inference: SDXL txt2img with LoRA using
diffusers.
Requirements
- Docker + Docker Compose v2
- A GPU-enabled Docker runtime is strongly recommended for training.
Build
docker compose build trainer
Train (caption + LoRA)
# train
docker compose run --rm trainer train \
--base-model /models/base/sd_xl_base_1.0.safetensors \
--images /datasets/title \
--run-name title \
--sdxl \
--caption-mode blip \
--concept-token sksSubject \
--max-train-steps 1600 \
--num-repeats 20 \
--network-dim 16 \
--network-alpha 8
Caption (BLIP)
If you want to generate .txt captions next to each image (same basename):
# caption
docker compose run \
--rm trainer caption \
--images /datasets/subject \
--prefix sksSubject \
--overwrite
Inference (SDXL txt2img with LoRA)
Generate images with the trained LoRA:
# inference
docker compose run \
--rm trainer infer \
--base-model /models/base/sd_xl_base_1.0.safetensors \
--lora /models/loras/title_20260204_123246.safetensors \
--prompt "sksSubject seaside" \
--negative-prompt "" \
--out-dir /datasets/title/inference \
--num-images 4 \
--steps 30 \
--cfg 7.0 \
--width 1024 \
--height 1024 \
--lora-scale 0.8 \
--seed 42
License
- Apache License 2.0